Crystal structure

CHAPTER II CRYSTAL STRUCTURE

2.1 Crystal lattices

211 Historical references

The first theory about the structure of crystals is attributed to Hauly (1783). This theory was based on
the fact that some crystals split into certain planes when cracked open. We call this phenomenon
cleavage. The plane along which the crystal splits is called the cleavage plane.

Hally started from this observation to develop his theory: Calcite (CaCO3) splits following only three
cleavage planes forming dihedral angles of 105°5°. That is, calcite breaks into small parallelepipeds
with the same dihedral angles (with a difference of +/- ), called rhombohedrons. A rhombohedron
is a regular parallelepiped: its dihedral angles are all the same, and its faces are rhombi. Following
the hypothesis of atoms and applying it to crystals, Hally stated that one could not proceed indefinitely
splitting these rhombohedrons and that there was a limit to this process. He called this limit - or
elementary rhombohedron - “molécule intégrante, ” called in modern crystallography as a primitive
cell.

A crystal comprises a group of identical unit cells that stack perfectly with no gaps. In such an
arrangement, each unit cell is deduced from another by a translation of the form:

—_—

{ =ma,+ma,+ma, (2.1)

where ™i>™2 and ™ are integer numbers. However, Haiiy’s theory did not thoroughly explain crystal
symmetry. In 1845, Bravais completed it by supposing that the crystal pattern within the primitive
cell (formed by one or more atoms or groups of atoms or molecules) did not fill all the available
space. Assuming that the symmetry of the crystal pattern was the one of a polyhedron and using
lattice symmetry, he could explain the symmetry of crystals.

In 1910, X-ray diffraction caused by crystals was discovered. The experiment by Friedreich and

Knipping that indicated the electromagnetic nature of X-rays (0-51‘i <A <2I‘K) was interpreted by
Von Laue, admitting that a crystal was formed by a crystal pattern repeated in space by translation

ma, +m,a, +m,a, .
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2.1.2 Description of a crystal lattice

According to this explanation, every crystal can be constructed by placing the same crystal pattern at
the nodes of a tridimensional lattice:

Crystal structure = lattice + crystal pattern
First, we discuss the lattice that supports the structure of the crystal. This lattice is defined by three

—_— —— —

vectors %1-%2:%; called lattice vectors. The parallelepiped built with these three vectors forms the unit
cell. The other cells are obtained by translating any form with integer numbers on the unit cell. In this
way, a set of unit cells is obtained. The vertexes of the unit cells are called nodes of the lattice.

At the eight vertexes of a unit cell, there are eight nodes, and each of them belongs to eight distinct
cells so that one node at a vertex of a unit cell counts for 1/8. If the unit cell used to describe the
crystal contains only one node, this is the primitive cell. However, it is common to use multiple cells
to make the symmetry more obvious; thus, n nodes are associated with one cell.

In this case, the crystal pattern defines the unit cell. Generally, the nature and the position of the atom
centers inside the primitive cell are specified. For example, consider the center (J) of an atom (j)
inside a cell. Its position is described by:

b?zjla;+j2&;+j3;3 (2.2)

\\\ where Ji+72>Js are the numerical coordinates of the atom J. They

are generally smaller than 1, and they cannot be equal to 1 in any
case. Another atom (k) has its center in K, and its numerical

k .k, .k

109°28' coordinates are 3 and so on.

\\ Example:

In the conventional (multiple) cell cubic centered, the atomic sites
Figure 2-1: Representation of a are located at:

primitive cell and the multiple 111
conventional cell of a centered 5 5 E
cubic structure 0,0,0and

2.1.3 Direct lattice and reciprocal lattice

Having chosen an origin and a primitive cell, we can continue the description of crystals, introducing
the node rows or lattice rows.

Joining the origin of the lattice with any node M, we have the vector:

OM = m,a, + m,a, + m,a, (2.3)
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With integer numbers ™i>™2:™M3 | et m be the greatest common divisor (gcd) of :M2:M;

m1=m-ml' mzzm.mz' m3=m.m3l
so that OM = m(m,'a,+m,'a, +m,'a,)=mOM’ (2.4)
where M ’is the closest node to the origin. The other nodes on this row are given by different values

ofm=-2,-1,0,1, 2, 3, etc. Nodes on this row are equidistant and form a one-dimensional lattice. It
is a lattice row indicated by three numbers /brackets.

We use [M'mmi'l 4o indicate a particular
crystallographic row.

We use (172 5m5") (6 indicate the family of rows of

the triplet ™ >my 'ms"

Consider now the plane through the nodes M,.M,,M,

—_— —— —

situated on the three-axis %>%>% sq that:

This plane is the lattice plane containing the nodes

M, ,M,,M; and the vectors:

Figure 2-2: Representation of a lattice plane

Every linear combination by an integer multiple of any two of these vectors is also a lattice plane
through M.M,,M;5 o determining the equation of this plane, let the unit vector normal to the

plane OH, and let P any point in the plane be located at OP =¥ 50 that;
F=xa+ya+za (2.5)
F-ui=0H, (2.6)

X, Y, and z are the coordinates of point P. The equation of the plane is then:

where OH , = x(ii -a1)+ y(ii - a2 ) + z(ii - a3) (2.7)

M,(n,,0,0), M,(0,n,,0), M;(0,0,n,

Writing that this plane passes through the points we get:
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. _OH, ia, = Ot g, = Ot 2.8)

n, n, n,

and the equation of the plane is then: S A

n n, ny

The numbers ™™™ in general, are not prime numbers; let n be their gcd so that:

n,=nn,’' n, =nn,' n,=nn,' (2.9)

Giving a plane with the equation: A A
n' n,' n,'

Thus, the plane is deduced from the previous one by a homothetic transformation of center O (the
origin of the lattice) and ratio 1/n. This plane is at a distance OH =OH, /nfrom the origin O and

passes through the points M, \M," M’ respectively on the axes a’g’a so that:

OM,'=n,'a, OM,'=n,'a, OM,'=n,'a,

The numbers n;’are the relative prime numbers. The equation of the plane can be written as:
n,'n,'x+n'n,'y+n,'n,'z=n,'n,'n;’ (2.10)

If we call:

h=n,'n;' k=n,'n' I=n'n,’

The equation can be written in the form:

h, k, | are called Miller indices of the lattice plane, which intercepts the axis in ™ %> M2 '@, 15'a5

hx+ky+lz=n'n,'n,'=hn,'= kn,'=In,) (2.11)
With the relations 77" = Ky =1n5"the niller indices, h, k, | are three relative prime numbers. As for
crystallographic directions, a convention for the notation of Miller indices h, k, | exists:

The notation with parentheses (h,k,l) indicates the lattice plane defined by these indices while using
the brackets {h,k,1} defines the set of lattice planes corresponding to the triplet h,k,l for every
permutation of it, e.g., for high-symmetry unit cells like cubic structures.

Example:

—_— —— —

a,,a,,a, a,,2a,,3a; 5

What are Miller indices of the plane cutting the three-axis respectively in

This plane has the equation:

x+2+i=1
2 3
with ' =L m'=2, n'=3 and ™m'm'n'=6 so that h=6, k=3, 1=2.
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Let us calculate now the normal to the plane hx + ky + 1z=0
u=(n, 'EI; —-n 'a:)x (n, 'EI: - ';1)

u=n,'n'(a,Xa,)+n'n'(a,xXa)+n'n,'(a Xa,)= (2.12)
= h(a, X a,)+ k(a, X a,)+1(a, X a,)

*

Defining: &1 =% X d; 4 =a;xa, @ =X (2.13)

—_— —_— —_— —_— —_— —_—

We note that the indices h,k,I represent the components of the normal to the plane in the coordinate

— — —_— —_—

system % > % > 93 The nodes corresponding to the vectors % define a new lattice of points: the

reciprocal lattice. The distances in A7 of the reciprocal lattice vectors correspond to the inverse of
the distance between the crystal lattice planes:

Thus, for greater values of h, k, and | indices, planes are less dense and have smaller interplanar
spacings.

_ 1 (2.14)

d

hkl

=

T hia

2.14 Vector operations: dot product, cross product, metric

—

We prefer to normalize the vectors % in such a way that:
—  a,Xa, (2.15)
ad ===
P = so that the normal definition is a,(a, % a,)

Following the previous definitions, we can write in a general way:

a-a, =9, (2.16)

The product V=a,(a,Xa) s the volume of the parallelepiped constituted by the three vectors of the
elementary base.

Using the formula, @xbx¢=5b(a-¢)—c(@-b) We can easily demonstrate that

J—

a, Xb, =

<| o

(2.17)

Thus, in general, we can compute each component of the vector product using the well-known method
of the symbolic determinant, keeping in mind that the numerical components are obtained in the
reciprocal lattice.

Example
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Consider two planes:

hx+ky+1lz=0 hx+k,y+1,z=0

and

—_— —  —

A line belonging to the two planes is given by a vector in the direct base (%15 @ @3):

k1, —k,l)a, + 1k, —Lh)a, +(hk, —hk)a,

whereas, given two vectors of the direct lattice:

xa, + ya, + za, and x'a,+y'a,+z7'a,

The normal to the plane containing these two vectors of the direct lattice is given by the vector:
(z'-y'Da, +(x'z-x2)a, +(xy'-yxa,

We can show, using a non-orthonormal basis like one of a nonsymmetric crystal lattice, that the scalar
product between two vectors is not given simply by the product of the components at the same index.
Therefore, it is helpful to introduce the matrix notation:

a, a,-a, a, -a, X
(xa1+ya2+za3)-(x'a1+y'a2+z'a3)=|: x vy z :| a-a, a, a,a, y' |=u,Mu
— - = = 2 z' (2.18)

a-a; a,-a; 4

M is called a metric tensor; its determinant is the volume squared, V2. Similarly, we can define the
dot product between vectors of the reciprocal lattice:

—_— — — —%

(‘;‘1*)2 a -a, a -a, h
(x&:w+y;1;*+Z;£:*)'(x'a:*+y';1:*+zr£;;*)=|: h k I:I Z*-a—z* (a;)2 a, -a k' =EE;M*E
ek ek —x —a I

2
4 a, a, "dy (ay")

1

(2.19)

We can show that M* =M™

2.1.5 Crystal systems

If we consider only rotational symmetries (excluding the others), crystals can be classified into seven
crystal systems according to the type and the number of axis of rotation they have. These represent
the minimum number of symmetries a crystal needs to belong to that particular system. The name of
a specific system identifies the Bravais lattices (14), which are compatible with the point groups (32)
that belong to the same crystal system.

The corresponding cells can be primitive, centered, face-centered, or body-centered.

In the conventional notation, we use (@.b,c) for lattice vectors and & = £(b,¢) , B= A(E’a),
y=4£(@G.b)
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Figure 2-3: The 14 Bravais lattices

2.2 Compact structures
Suppose we statistically observe which structures are the most common for the periodic table of

elements. In that case, we note that metals generally crystallize with structures, which enable each
atom to have the highest possible number of bonds.
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That is, metals tend to crystallize in the form of compact crystal structures such as face-centered cubic
(FCC - figure 2-4), hexagonal close packing (HCP), or cubic-centered (CC). The tendency to form
such highly symmetric crystal structures relates to metallic bonding. On the one hand, this type of
bonding is weak (lower melting points, lower strength, etc.). But on the other hand, the atoms have a
high probability of forming the highest possible number of bonds. When bonding is isotropic, it
implies the formation of highly symmetric crystal structures.

Li Metal Elements from the Periodic Table

Na
JCINSIOMEICIRSIGIDIS)
Ro]&) (V) (@0 [Nb][Mo] () RY &B £9) &g €9 (i) G
Cs|(Ba] @) (D)[Ta] (W] R @9 () D &Y B9 (M D

La Pr) (Nd/ Pny Sny [Eu @@@
HeP e @

(Cubic Close Packing)  (Hexagonal Close Packing) (Body Centered Cubic) (4H) (Other)

18/08/2008 chemtips com

Figure 2-4: Crystal structures of metals in the periodic table

There are two ways of compactly stacking up layers of spheres (figure 2-5). The third layer can be
either superposed to the first layer (ABA) arrangement or superposed to a hole in the first layer of the
ABC arrangement. The first case corresponds to an HCP structure, and the second stacking
arrangement is an FCC structure with the highest packing density. The cubic-centered structure is not
compact, but the second closest neighbors (especially in metal compounds) are relatively comparable.
Thus, an atom in the center of the cell can bind with its eight nearest neighbors and the six-second
closest neighbors, giving a total of 14 bonds.

It is interesting to note how the arrangement of atomic spheres in compact structures leaves some
empty spaces in particular locations. These are called interstitial sites. According to the symmetry in
the position of the atoms surrounding an interstitial site, these sites are at specific locations on
characteristic polyhedrons (figure 2-6).

The presence of interstitial sites helps to understand the crystallography of several crystals formed by
diatomic molecules. A diatomic crystal can comprise an element A with a high symmetry lattice and
an element B occupying the interstitial sites. For example, chlorine has an FCC arrangement in a
NaCl crystal, and sodium sits on the octahedral sites (figure 2-7). In ZnS, sulfur is on an FCC lattice,
whereas zinc is on the tetrahedral sites (figure 2-8). In the next section, the origin of the formation of
these crystal structures based on their coordination and radii is presented.
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Figure 2-6: Tetrahedral interstitial sites (left) and octahedral sites (right) in FCC structures (a) and CC (b).
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Figure 2-8: Zinc sulfide structure: zinc atoms are located in the tetrahedral sites of the FCC lattice of sulfur
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2.3 Coordination number

The structure of a crystal can be related to its chemical composition. We have discussed how the
study of the chemical bond makes it possible to determine the equilibrium position of atoms in
molecules. Can we state that the distance observed between two atoms can be split up in a contribution
from atom A and another from atom B? Strictly speaking, we cannot. We have shown how bonding
within solids leads to a superposition and hybridization of atomic orbitals, displacing the electrons,
which are not confined in a rigid sphere. The atomic radiuses in a crystal are then related to the type
of bonds. Table I1-1 shows that the atomic radius of bonded atoms is often more extensive than that
of neutral atoms.

Table 11-1: Atomic radii and bonds

Atomic and ionic radius

H Approximative values. For origin references, consult W.B. He
2,08 Pearson, Crystal chemistry and physics of metals and alloys,
Wiley, 1972.

| 10

U %o Units: 1A=10 m B c N 0 F Ne

0,35 0,23 |015 |1,71 |1,40 |1,36 |1,58

Standard radius for ions e S A O s £ ot
in the configuration of neutral gases (filled layer) Al Si P S Ccl Ar
Radius of atoms in the case of tetrahedral covalent bonds 050 (041 |212 |1,84 |181 [1,88
Radius of ions for coordination number of 12 (metals) 196 117 1110 |1.04 |0.99

088 {077 [070 066 |0.64
Na Mg
0,97 |0,65
1,40
Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
1,33 |099 |081 |068 0,74 |062 |053 [222 |198 [1,95 |2,00
1,35 11,81 |1.26 [1.22 |118 [114 [111

. Rb Sr Y Zr Nb Mo Tc Ru Ag Cd In Sn Sb Te I Xe
1,48 |1,13 | 0,93 |080 |0,67 1,26 10,97 [0.81 0; H 2 2521 | 2185 2
1,52 |1.48 [1.44 |140 |[136 [132 [128

Cs Ba La Hf Ta w Re Os Au Hg Tl Pb Rn
1,67 1,35 | 1,15 1,37 |1,10 |0,95 |0.,84
1,48

Fr Ra Ac
1,75 | 1.87 |11 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
) 1,01

1712 2,042 . 1.9?+,
Th Pa u Pu cm Lr
0,99 |080 |083

1,58 i ) ' .

If we can predict or measure the atomic radii of elements in a compound, we can deduce the crystal
structure. It has been scientifically proven that atoms choose the most compact structure permitted by
their radii. This radius determines the number of closest neighbors, i.e., the coordination number

(figure 2-9).
00D X

CN = 1 possible TN = 2 passible CN = 3 maximum CN = 4 unstable

Figure 2-9: The maximum number of neighbors compatible with a radius ratio of 0.2 is 3
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Table 11-2: Coordination number N as a function of atomic radiuses

N radius ratio r/R geometry
2 0<% <0.155
L

3 0.155 < & <0225

4 0.225 < ﬁ < 0.414

6 0.414 < & < 0.732

8 0732< £ <1

12 1

We call this number the coordination number. For example, in ionic materials, we can calculate the
precise interatomic distance D between the closest neighbors from the simple formula (cf table 11-3):

D=R, +R,+A, (2.20)

The radii Rzand R are those of neutral atoms, and the correction Ay depends on the coordination
number.

Table 11-3: Corrections to interatomic distances in ionic crystals. The atomic radii in the crystal decrease for small
coordination numbers and increase for big coordination numbers

1 -0.50 5 -0.05 9 0.11
2 gl 6 0 10 0.14
3 -0.19 7 0.04 11 0.17
4 -0.11 8 0.08 12 0.19
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