
Crystal structure 

Physics of materials Chapter II page 17 

 

CHAPTER II  CRYSTAL STRUCTURE 
 
 
 

 
 

2.1  Crystal lattices 
 

 

2.1.1  Historical references 

 

The first theory about the structure of crystals is attributed to Haüy (1783). This theory was based on 

the fact that some crystals split into certain planes when cracked open. We call this phenomenon 

cleavage. The plane along which the crystal splits is called the cleavage plane. 

 

Haüy started from this observation to develop his theory: Calcite (CaCO3) splits following only three 

cleavage planes forming dihedral angles of 105°5’. That is, calcite breaks into small parallelepipeds 

with the same dihedral angles (with a difference of +/- π), called rhombohedrons. A rhombohedron 

is a regular parallelepiped: its dihedral angles are all the same, and its faces are rhombi. Following 

the hypothesis of atoms and applying it to crystals, Haüy stated that one could not proceed indefinitely 

splitting these rhombohedrons and that there was a limit to this process. He called this limit - or 

elementary rhombohedron - “molécule intégrante,” called in modern crystallography as a primitive 

cell. 

 

A crystal comprises a group of identical unit cells that stack perfectly with no gaps. In such an 

arrangement, each unit cell is deduced from another by a translation of the form: 

where and are integer numbers. However, Haüy’s theory did not thoroughly explain crystal 

symmetry. In 1845, Bravais completed it by supposing that the crystal pattern within the primitive 

cell (formed by one or more atoms or groups of atoms or molecules) did not fill all the available 

space. Assuming that the symmetry of the crystal pattern was the one of a polyhedron and using 

lattice symmetry, he could explain the symmetry of crystals.  

 

In 1910, X-ray diffraction caused by crystals was discovered. The experiment by Friedreich and 

Knipping that indicated the electromagnetic nature of X-rays ( ) was interpreted by 

Von Laue, admitting that a crystal was formed by a crystal pattern repeated in space by translation 

. 

(2.1) 
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2.1.2  Description of a crystal lattice 

 

According to this explanation, every crystal can be constructed by placing the same crystal pattern at 

the nodes of a tridimensional lattice: 

Crystal structure = lattice + crystal pattern 

First, we discuss the lattice that supports the structure of the crystal. This lattice is defined by three 

vectors called lattice vectors. The parallelepiped built with these three vectors forms the unit 

cell. The other cells are obtained by translating any form with integer numbers on the unit cell. In this 

way, a set of unit cells is obtained. The vertexes of the unit cells are called nodes of the lattice. 

 

At the eight vertexes of a unit cell, there are eight nodes, and each of them belongs to eight distinct 

cells so that one node at a vertex of a unit cell counts for 1/8. If the unit cell used to describe the 

crystal contains only one node, this is the primitive cell. However, it is common to use multiple cells 

to make the symmetry more obvious; thus, n nodes are associated with one cell. 

 

In this case, the crystal pattern defines the unit cell. Generally, the nature and the position of the atom 

centers inside the primitive cell are specified. For example, consider the center (J) of an atom (j) 

inside a cell. Its position is described by: 

 

 

 

 

where are the numerical coordinates of the atom j. They 

are generally smaller than 1, and they cannot be equal to 1 in any 

case. Another atom (k) has its center in K, and its numerical 

coordinates are  and so on. 

 

 

Example: 

In the conventional (multiple) cell cubic centered, the atomic sites 

are located at: 

0, 0, 0 and  

 

 

 

2.1.3  Direct lattice and reciprocal lattice 

 

Having chosen an origin and a primitive cell, we can continue the description of crystals, introducing 

the node rows or lattice rows. 

 

Joining the origin of the lattice with any node M, we have the vector: 

(2.2) 

(2.3) 

Figure 2-1: Representation of a 

primitive cell and the multiple 

conventional cell of a centered 

cubic structure 
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With integer numbers . Let m be the greatest common divisor (gcd) of : 

 

 

     

so that    

 

where M ’is the closest node to the origin. The other nodes on this row are given by different values 

of m = -2, -1, 0, 1, 2, 3, etc. Nodes on this row are equidistant and form a one-dimensional lattice. It 

is a lattice row indicated by three numbers /brackets.   

 

We use  to indicate a particular 

crystallographic row. 

 

We use to indicate the family of rows of 

the triplet . 

 

Consider now the plane through the nodes 

situated on the three-axis so that: 

 

 

 

 
 

This plane is the lattice plane containing the nodes 

 and the vectors: 

 

 

 

 
Figure 2-2: Representation of a lattice plane 

 

Every linear combination by an integer multiple of any two of these vectors is also a lattice plane 

through . For determining the equation of this plane, let the unit vector normal to the 

plane and let P any point in the plane be located at so that: 

 

 

 

 

x, y, and z are the coordinates of point P. The equation of the plane is then: 

where 

Writing that this plane passes through the points we get:

(2.4) 

(2.5) 

(2.6) 

  (2.7) 

P 
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and the equation of the plane is then: 

 

The numbers in general, are not prime numbers; let n be their gcd so that: 

 

   
 

 

Giving a plane with the equation: 

 

Thus, the plane is deduced from the previous one by a homothetic transformation of center O (the 

origin of the lattice) and ratio 1/n. This plane is at a distance from the origin O and 

passes through the points respectively on the axes so that: 

 

     
 

The numbers ni’ are the relative prime numbers. The equation of the plane can be written as: 

 

 

If we call: 

 

     
 

The equation can be written in the form: 

h, k, l are called Miller indices of the lattice plane, which intercepts the axis in . 

With the relations the Miller indices, h, k, l are three relative prime numbers. As for 

crystallographic directions, a convention for the notation of Miller indices h, k, l exists: 

 

The notation with parentheses (h,k,l) indicates the lattice plane defined by these indices while using 

the brackets {h,k,l} defines the set of lattice planes corresponding to the triplet h,k,l for every 

permutation of it, e.g., for high-symmetry unit cells like cubic structures. 

 

Example: 

What are Miller indices of the plane cutting the three-axis respectively in ? 

This plane has the equation: 

 

 

 

with  and     so that h=6, k=3, l=2. 

 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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Let us calculate now the normal to the plane hx + ky + lz = 0 

 

              
 

 
 

Defining:     

 

We note that the indices h,k,l represent the components of the normal to the plane in the coordinate 

system . The nodes corresponding to the vectors define a new lattice of points: the 

reciprocal lattice. The distances in of the reciprocal lattice vectors correspond to the inverse of 

the distance between the crystal lattice planes: 

 

 

 

 

Thus, for greater values of h, k, and l indices, planes are less dense and have smaller interplanar 

spacings. 

 

 

2.1.4  Vector operations: dot product, cross product, metric 

 

We prefer to normalize the vectors in such a way that: 

 

  so that the normal definition is   

 

Following the previous definitions, we can write in a general way: 

            

  
 

The product is the volume of the parallelepiped constituted by the three vectors of the 

elementary base. 

 

Using the formula, we can easily demonstrate that  

 

 
 

Thus, in general, we can compute each component of the vector product using the well-known method 

of the symbolic determinant, keeping in mind that the numerical components are obtained in the 

reciprocal lattice. 

 

Example 

(2.17) 

(2.12) 

(2.14) 

(2.15) 

(2.16) 

(2.13) 
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Consider two planes: 

  and    

A line belonging to the two planes is given by a vector in the direct base : 

 

 
 

whereas, given two vectors of the direct lattice: 

 

and  

 

The normal to the plane containing these two vectors of the direct lattice is given by the vector: 

 

 
 

We can show, using a non-orthonormal basis like one of a nonsymmetric crystal lattice, that the scalar 

product between two vectors is not given simply by the product of the components at the same index. 

Therefore, it is helpful to introduce the matrix notation: 

 

 
 

M is called a metric tensor; its determinant is the volume squared, V2. Similarly, we can define the 

dot product between vectors of the reciprocal lattice: 

 

 

We can show that . 

 

 

2.1.5  Crystal systems 

 

If we consider only rotational symmetries (excluding the others), crystals can be classified into seven 

crystal systems according to the type and the number of axis of rotation they have. These represent 

the minimum number of symmetries a crystal needs to belong to that particular system. The name of 

a specific system identifies the Bravais lattices (14), which are compatible with the point groups (32) 

that belong to the same crystal system. 

 

The corresponding cells can be primitive, centered, face-centered, or body-centered. 

 

In the conventional notation, we use for lattice vectors and , , 

. 

(2.18) 

(2.19) 
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Figure 2-3: The 14 Bravais lattices 

 

2.2  Compact structures 
 

Suppose we statistically observe which structures are the most common for the periodic table of 

elements. In that case, we note that metals generally crystallize with structures, which enable each 

atom to have the highest possible number of bonds.
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That is, metals tend to crystallize in the form of compact crystal structures such as face-centered cubic 

(FCC - figure 2-4), hexagonal close packing (HCP), or cubic-centered (CC). The tendency to form 

such highly symmetric crystal structures relates to metallic bonding. On the one hand, this type of 

bonding is weak (lower melting points, lower strength, etc.). But on the other hand, the atoms have a 

high probability of forming the highest possible number of bonds. When bonding is isotropic, it 

implies the formation of highly symmetric crystal structures. 

 
Figure 2-4: Crystal structures of metals in the periodic table 

 

There are two ways of compactly stacking up layers of spheres (figure 2-5). The third layer can be 

either superposed to the first layer (ABA) arrangement or superposed to a hole in the first layer of the 

ABC arrangement. The first case corresponds to an HCP structure, and the second stacking 

arrangement is an FCC structure with the highest packing density. The cubic-centered structure is not 

compact, but the second closest neighbors (especially in metal compounds) are relatively comparable. 

Thus, an atom in the center of the cell can bind with its eight nearest neighbors and the six-second 

closest neighbors, giving a total of 14 bonds. 

 

It is interesting to note how the arrangement of atomic spheres in compact structures leaves some 

empty spaces in particular locations. These are called interstitial sites. According to the symmetry in 

the position of the atoms surrounding an interstitial site, these sites are at specific locations on 

characteristic polyhedrons (figure 2-6). 

 

The presence of interstitial sites helps to understand the crystallography of several crystals formed by 

diatomic molecules. A diatomic crystal can comprise an element A with a high symmetry lattice and 

an element B occupying the interstitial sites. For example, chlorine has an FCC arrangement in a 

NaCl crystal, and sodium sits on the octahedral sites (figure 2-7). In ZnS, sulfur is on an FCC lattice, 

whereas zinc is on the tetrahedral sites (figure 2-8). In the next section, the origin of the formation of 

these crystal structures based on their coordination and radii is presented. 
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Figure 2-5: Close packing in FCC and HCP structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-6: Tetrahedral interstitial sites (left) and octahedral sites (right) in FCC structures (a) and CC (b). 

Face Centered Cubic (FCC)             Hexagonal Close Packed (HCP) 

Stacking A B C                                Stacking A B A 
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Figure 2-7: Sodium chloride structure: sodium atoms are located in the octahedral sites of the FCC lattice of chlorine 

 
Figure 2-8: Zinc sulfide structure:  zinc atoms are located in the tetrahedral sites of the FCC lattice of sulfur
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2.3  Coordination number 
 

The structure of a crystal can be related to its chemical composition. We have discussed how the 

study of the chemical bond makes it possible to determine the equilibrium position of atoms in 

molecules. Can we state that the distance observed between two atoms can be split up in a contribution 

from atom A and another from atom B? Strictly speaking, we cannot. We have shown how bonding 

within solids leads to a superposition and hybridization of atomic orbitals, displacing the electrons, 

which are not confined in a rigid sphere. The atomic radiuses in a crystal are then related to the type 

of bonds. Table II-1 shows that the atomic radius of bonded atoms is often more extensive than that 

of neutral atoms. 

 
Table II-1: Atomic radii and bonds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we can predict or measure the atomic radii of elements in a compound, we can deduce the crystal 

structure. It has been scientifically proven that atoms choose the most compact structure permitted by 

their radii. This radius determines the number of closest neighbors, i.e., the coordination number 

(figure 2-9). 
 

 

 

 

 

 

 

 

 
Figure 2-9: The maximum number of neighbors compatible with a radius ratio of 0.2 is 3 

 

Atomic and ionic radius 

Approximative values. For origin references, consult W.B. 

Pearson, Crystal chemistry and physics of metals and alloys, 

Wiley, 1972. 

Units: 1 Å = 10
-10

 m 

Standard radius for ions 

in the configuration of neutral gases (filled layer) 

Radius of atoms in the case of tetrahedral covalent bonds 

Radius of ions for coordination number of 12 (metals) 
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Table II-2: Coordination number N as a function of atomic radiuses  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We call this number the coordination number. For example, in ionic materials, we can calculate the 

precise interatomic distance D between the closest neighbors from the simple formula (cf table II-3): 

 

 

The radii and are those of neutral atoms, and the correction depends on the coordination 

number. 

 
Table II-3: Corrections to interatomic distances in ionic crystals. The atomic radii in the crystal decrease for small 

coordination numbers and increase for big coordination numbers 

 

N N(Å) N N(Å) N N(Å) 

1 -0.50 5 -0.05 9 0.11 

2 -0.31 6 0 10 0.14 

3 -0.19 7 0.04 11 0.17 

4 -0.11 8 0.08 12 0.19 
 

   N              radius ratio r/R                  geometry 

 

(2.20) 


